
Evaluating Performance of HTTP/3 for Video
Streaming: A Comparative Study with Previous

Versions of HTTP

Thomas Daniel Galligan

Final Year Project
BSc in Computer Science

Supervisor: Dr. Cormac Sreenan
Second Reader: Dr. Ahmed Zahran

Department of Computer Science
University College Cork

April 2023

i

Abstract

Standardized in July of 2022, HTTP/3 aims to improve over previous
versions of HTTP. The project aims to investigate the protocol’s

performance concerning video streaming and compare it with earlier
versions of HTTP. To investigate this, tests run from multiple clients were
tested against a web server that supports HTTP/1.1, HTTP/2, and HTTP/3.
These tests were conducted under different network environments that
could be encountered in the real world while downloading files and

streaming video over HTTP. Network variables tested against were latency,
packet loss rates, and egress bandwidth from the data sender. The results
from these tests showed a slight decrease in overall throughput via HTTP/3

compared to the other protocols when placed under the same network
conditions. HTTP/3 performed significantly better under high packet loss
environments, but worse in high latency environments. Under differing
bandwidth conditions, HTTP/3 performed worse than HTTP/1.1 and

HTTP/2, but the difference was negligible. Under high latency conditions,
HTTP/3 performed poorly and was the worst-performing protocol of the

three. The results suggest that HTTP/3 has noticeably better video
streaming performance than the other two. That performance gain is offset,

however when the latency is sufficiently high.

ii

Declaration of Originality

In signing this declaration, you are conforming, in writing, that the submitted
work is entirely your own original work, except where clearly attributed
otherwise, and that it has not been submitted partly or wholly for any other
educational award.

I hereby declare that:

• this is all my own work unless clearly indicated otherwise, with full
and proper accreditation;

• with respect to my own work: none of it has been submitted at any
education institution contributing in any way to an educational award;

• with respect to anothers’ work: all text, diagrams, code, or ideas,
whether verbatim, paraphrased, or otherwisemodified or adapted, have
been duly attributed to the source in a scholarly manner, whether from
books, papers, lecture notes or any other student’s work, whether pub-
lished or unpublished, electronically or in print.

Signed: Thomas Daniel Galligan
Date: 24th April, 2023

iii

Acknowledgements

I want to express my sincere gratitude to my project supervisor, Dr. Cor-
mac Sreenan, for his guidance and support throughout this project. His ex-
pertise, encouragement, and insightful feedback have been instrumental in
shaping my work.

I would also like to thank Dr. Jason Quinlan for introducing me to the
QUIC transport protocol and sharing his knowledge and expertise in the
field. His prior mentorship and support have been invaluable in helping
me understand the intricacies of this complex protocol.

I want to extend my appreciation to Liam Crilly from NGINX for pro-
viding me with valuable insights into NGINX’s QUIC and HTTP/3 imple-
mentation. His contributions have been constructive in deepening my un-
derstanding of this cutting-edge technology.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2

2 Background 3
2.1 Video Streaming . 3

2.1.1 Dynamic Adaptive Streaming over HTTP (DASH) . 3
2.1.2 HTTP Live Streaming (HLS) 4
2.1.3 Progressive Streaming 5

2.2 HTTP Versions . 5
2.2.1 HTTP/0.9 . 5
2.2.2 HTTP/1.0 . 6
2.2.3 HTTP/1.1 . 6
2.2.4 HTTP/2 . 6
2.2.5 HTTP/3 . 7

2.3 Head of Line Blocking . 7
2.3.1 HTTP Head-of-Line-Blocking 8
2.3.2 TCP Head-of-Line Blocking 8

2.4 Transport Protocols . 8
2.4.1 Transmission Control Protocol (TCP) 8
2.4.2 TCP over Transport Layer Security (TLS) 9
2.4.3 Congestion Control in TCP 9
2.4.4 User Datagram Protocol (UDP) 11
2.4.5 QUIC . 12
2.4.6 Congestion Control in QUIC 14
2.4.7 Transport Layer Security (TLS) and QUIC 14

3 Analysis 16
3.1 Server Implementations . 16

3.1.1 NGINX . 16

v

3.1.2 Cloudflare Quiche + NGINX 17
3.1.3 Google Quiche + Envoy 17
3.1.4 QUIC-Go + Caddy 18

3.2 Client Implementations . 19
3.2.1 Chromium . 19
3.2.2 QUIC-Go . 19
3.2.3 Quiche + cURL . 19

4 Implementation 20
4.1 Overview . 20
4.2 Traffic Shaping . 20

4.2.1 Bandwidth . 20
4.2.2 Latency . 21
4.2.3 Packet Loss . 21
4.2.4 Combining TBF with Netem 22

4.3 Web Server . 22
4.4 Clients . 23

4.4.1 File Download Tests 23
4.4.2 Video streaming test 25

4.5 Data Analysis . 27

5 Experiments 29
5.1 Results . 30

5.1.1 Video Streaming Results Under Optimal Conditions 30
5.1.2 Performance under bandwidth constraints 34
5.1.3 Performance under packet loss conditions 40
5.1.4 Performance under latency conditions 46

6 Conclusions and Future Work 51
6.1 Conclusions . 51
6.2 Future Work . 51
6.3 Personal Reflection on the Project 52

Bibliography i

Acronyms vi

vi

List of Figures

2.1 Diagram of DASH video encoding process 4
2.2 Diagram showing the different transport protocols used by

the different HTTP versions 7
2.3 Diagram showing the TCP handshake 8
2.4 Diagram showing the TCP handshake with TLSv1.2 or lower 9
2.5 Diagram showing the TCP handshake with TLSv1.3 10
2.6 Diagram showing the initial QUIC handshake with TLS . . . 12
2.7 Diagram showing the QUIC handshake with 0-RTT 13

3.1 Diagram of Envoy’s use of HTTP/3 18

4.1 Traffic Shaping . 21

5.1 Mean bitrate of HTTP/3, HTTP/2, and HTTP/1.1 under op-
timal network conditions 31

5.2 Median buffer length of HTTP/3, HTTP/2 and HTTP/1.1
under optimal network conditions 32

5.3 Lower quartile of buffer length of HTTP/3, HTTP/2 and
HTTP/1.1 under optimal network conditions 32

5.4 Rounded-up initial load time ofHTTP/3, HTTP/2 andHTTP/1.1
under optimal network conditions 33

5.5 Mean time to download a 2MB file using HTTP/3, HTTP/2,
and HTTP/1.1 under different bandwidth constraints 34

5.6 Relationship between mean video bitrate and bandwidth . . 35
5.7 Relationship between median video buffer length and band-

width . 36
5.8 Relationship between the lower quartile of video buffer length

and bandwidth . 36
5.9 Relationship between the number of bitrate switches and

bandwidth . 37

vii

5.10 Relatinship between the video bitrate distribution streamed
and bandwidth . 38

5.11 Relationship between rounded-up initial load time of video
and bandwidth . 38

5.12 Mean time to download a 2MB file using HTTP/3, HTTP/2,
and HTTP/1.1 under different packet loss rates 40

5.13 Relationship between mean video bitrate and packet loss rate 41
5.14 Relationship betweenmedian video buffer length and packet

loss rate . 42
5.15 Relationship between the lower quartile of video buffer length

and packet loss rate . 42
5.16 Relationship between the number of bitrate switches and

packet loss rate . 43
5.17 Relationship between video bitrate distribution and packet

loss rate . 44
5.18 Relationship between the rounded-up initial load time of video

and packet loss rate . 45
5.19 Mean time to download a 2MB file using HTTP/3, HTTP/2,

and HTTP/1.1 under different latency 46
5.20 Relationship between mean video bitrate and latency 47
5.21 Relationship between median video buffer length and latency 47
5.22 Relationship between the lower quartile of video buffer length

and latency . 48
5.23 Relationship between the number of bitrate switches and la-

tency . 48
5.24 Relationship between video bitrate distribution and latency . 49
5.25 Relationship between the rounded-up initial load time of video

and latency . 49

viii

Listings

2.1 Example DASH manifest quality profile 4
2.2 Example HLS manifest quality profile 4
4.1 Adding bandwidth constraints with TBF 21
4.2 Adding latency with Netem 21
4.3 Adding packet loss with Netem 22
4.4 Traffic Shaping Script with Netem and TBF 22
4.5 Downloading files with curl, and redirecting to /dev/null . . 24
4.6 Downloading files over different HTTP protocols 24
4.7 Downloading files with curl, and recording the time it takes

to download the file . 24
4.8 Example line of a testfile used by the Bash script 25

ix

Chapter 1

Introduction

The introduction of video streaming in recent years [1] has revolutionized
how we consume media, from entertainment to education and communica-
tion. With the increasing internet traffic for video content [2], the need for
efficient video streaming technologies has also risen due to increasing bitrate
requirements of video over time [2]. Hypertext Transfer Protocol (HTTP)
(Hypertext Transfer Protocol) is widely used for video streaming. Hyper-
text Transfer Protocol Version 3 (HTTP/3) is the latest version of HTTP, de-
signed to address previous versions’ performance limitations, such as head-
of-line blocking and connections only consisting of a single stream (further
explained in Chapter 2).

In this project, the performance of HTTP/3 for video streaming will be
evaluated using Dynamic Adaptive Streaming over HTTP (Dynamic Adap-
tive Streaming over HTTP (DASH)), a popular method for streaming video.
This project will investigate the performance of HTTP/3, which will be
compared with previous versions of the protocol, and investigate whether
HTTP/3 improves video streaming performance.

1.1 Motivation
The performance of video streaming is critical for User Experience (UX).
Bad Quality of Experience (QoE) often leads users to abandon video play-
back [3]. Therefore, it is essential to ensure that video QoE is sufficiently
high to keep users engaged.

According to Akamai, a Content Delivery Network (Content Delivery
Network (CDN)) provider, users tend to abandon videos after 2 seconds of
initial load time. Each additional second of load time increases the video

1

abandonment rate by 5.8% incrementally [3]. Netflix also quantifies the
delay until video playback starts as a QoE metric [4]. From this, the per-
formance of video streaming is vital for UX. If a new protocol improved
the performance of video streaming to replace existing ones easily, it would
benefit both users and service providers.

1.2 Objectives
The objectives of this project are to determine the following:

• Is HTTP/3 a viable alternative to previous versions of HTTP for video
streaming?

• How does HTTP/3 compare to the previous versions of HTTP under
different network conditions?

• Does the initial load time of video streamed over HTTP/3 improve
under any conditions compared to previous versions of HTTP?

The first objective is to determine if HTTP/3 is a viable alternative to
previous versions of HTTP for video streaming. If HTTP/3 can be used as an
alternative to previous versions without significant performance regressions,
it may be worth replacing previous HTTP versions for video streaming with
the new version.

The second objective is to determine how HTTP/3 compares to previous
versions of HTTP under different network conditions. This can be important
for mobile users on 4G networks who may be subject to varying network
conditions [5].

Finally, the third objective is to determine if the initial load time of
streamed video over HTTP/3 improves under any conditions compared to
previous versions of HTTP. The initial load time of video streaming is es-
sential for QoE, as detailed by the Akamai study [3] and Netflix [4].

2

Chapter 2

Background

This chapter will discuss the background of video streaming, HTTP, its un-
derlying transport protocols, and HTTP security. Different HTTP versions
will be compared in this project and briefly discussed to get important con-
text on the components.

2.1 Video Streaming
Video-on-demand streaming is the process of delivering video content over
the internet in a continuous flow. It enables users to watch video content
without downloading the entire video file before playback can start. Video
streaming has gained immense popularity in recent years, with the rise of
platforms such as YouTube and Netflix [1], among the most visited websites
in the world [6].

2.1.1 Dynamic Adaptive Streaming over HTTP (DASH)
DASH, sometimes called MPEG-DASH [7], is a popular method for video
streaming [8] that has gained widespread adoption in recent years. DASH
enables the delivery of video content in small segments. These video seg-
ments can be encoded into different quality profiles, allowing the client to
dynamically select the quality profile that best suits the current network
conditions. This approach allows an algorithm to fetch video segments at
whichever quality profile is best for the situation [9].

DASH content must be pre-encoded into segments and containerized in
a format called m4s [7]. The m4s files are MP4-encoded binary files con-
taining multimedia (can be video, audio, or audio and video together) data.

3

Figure 2.1: Diagram of DASH video encoding process

After encoding, a manifest file is generated, which includes information on
the segments and informs a client of the naming convention for segments. It
also includes different quality profiles and the bitrate of each quality profile.
The client then uses this information to download the segments and play the
video.

1 <Representation id="320x240 45.0kbps" mimeType="video/mp4"
codecs="avc1.42c00d" width="320" height="240" frameRate
="24" sar="1:1" startWithSAP="1" bandwidth="45226" />

Listing 2.1: Example DASH manifest quality profile

2.1.2 HTTP Live Streaming (HLS)
HTTPLive Streaming (HLS) is a video streamingmethod initially drafted by
Apple Inc. and later standardized by the IETF [10]. HLS is similar to DASH
in that it also uses video split into segments and a manifest file to inform the
client of the available segments available and their quality profiles. Themain
difference between DASH and HLS is that HLS uses the MPEG-2 Transport
Stream (MPEG-TS) container format, while DASH uses the MP4 container
format. MPEG-TS is a container format that stores video, audio, and other
metadata [11].

Twitch uses HLS [12], a major live-streaming platform, to deliver live
video content. HLS is also a fallback for YouTube on iOS devices [13],
which natively supports the technology [14].

1 #EXT-X-STREAM -INF:BANDWIDTH=45226,CODECS="avc1.42c00d",
RESOLUTION=320x240

2 320x240_45.0kbps.m3u80

Listing 2.2: Example HLS manifest quality profile

4

2.1.3 Progressive Streaming
Progressive video streaming is downloading a video file in byte ranges and
playing the video as it is downloaded. To stream a video, the video file’s
header must be downloaded, containing metadata about the video, includ-
ing bitrate, length, and framerate. The client can then use this information
to request bytes from the video file in chunks using the HTTP range HTTP
header. This HTTP video streaming method is not standardized and inflex-
ible, so it was not considered for this project.

2.2 HTTP Versions
HTTP is an application-layer protocol that transfers data over the World
Wide Web [15]. HTTP is a request-response protocol, meaning that a client
sends a request to a server, and the server responds. The protocol was ini-
tially designed by Tim Berners-Lee in 1989 at CERN [15] and was created
to transfer hypertext documents over the World Wide Web (which was re-
ferred to asMesh at the time [15]). In modern applications, however, HTTP
is used for much more than just hypertext documents [2].

HTTP version standards aim to implement HTTP semantics [16]. They
do this by implementing an application-layer protocol that satisfies theHTTP
semantics [16] and transferring this application data over existing transport
layer protocols. HTTP/0.9, HTTP/1.X, and Hypertext Transfer Protocol
Version 2 (HTTP/2) are all transported by Transmission Control Protocol
(Transmission Control Protocol (TCP)) over IP. HTTP/3, on the other hand,
is transported by QUIC over IP.

2.2.1 HTTP/0.9
Version 0.9 of HTTP is referred to as the one-line protocol [15] as its header
only contains the ”GET” method and the path to the document in one line
before a line feed [17]. This protocol was designed to be idempotent1 and
be forward-compatible with future versions of the protocol. This version
of HTTP was too simple for modern use and was replaced by HTTP/1.0 in
1996 [15].

1Idempotent means that the same request can be sent multiple times without changing
the request result.

5

2.2.2 HTTP/1.0
Hypertext Transfer Protocol Version 1.1 (HTTP/1.0)/1.0was the first version
of HTTP/1.0 to be standardized by the IETF [18]. It was designed to support
requests using version 0.9 of the protocol entirely. It was also designed to
be extensible [18] by way of the header fields, allowing arbitrary header
fields to be added to requests and responses. With this version of HTTP,
users extended the protocol to add implementation-defined headers to add
features to the communication between client and server.

2.2.3 HTTP/1.1
Hypertext Transfer Protocol Version 1.1 (HTTP/1.1) was the first HTTP ver-
sion to enforce the Host header, which standardized the ability to use the
same machine and IP address for multiple websites [19]. This was impor-
tant, as IP address space is limited. The Host header also allows multiple
distinct websites to share an IP address. This also allowed for machines
to be used as web proxies. The externally-connected proxy machine could
tell what website is requested based on the Host to proxy the connection to
the appropriate web server. HTTP/1.1 also introduced Persistent Connec-
tions [19], which allows a TCP connection to stay open between the client
and server for a server-specified length of time. Therefore, multiple requests
and responses could occur over one TCP connection without creating a new
connection for each request. This removed the overhead of a TCP handshake
for each request and made the protocol considerably more efficient.

2.2.4 HTTP/2
HTTP/2 was initially designed by Google and called SPDY [20], initially
drafted in 2009 [21]. It aimed to reduce the latency of web pages.

The standard introduced header compression calledHPACK [22], mean-
ing the headers can be sent in a single frame, which reduces the number of
frames that need to be sent for the same data. This makes the protocol more
efficient, as fewer TCP packets need to be sent.

The standard also introduced the concept of connection multiplexing to
the protocol, allowing multiple traffic streams to take place over the same
TCP connection [23]. This allowed a client to download multiple files con-
currently.

server push was another feature specific to HTTP/2, which allows the
server to push resources to the client before the client has requested them.

6

Figure 2.2: Diagram showing the different transport protocols used by the
different HTTP versions

This allows the server to push resources the client will likely request shortly
after an initial request, such as images or stylesheets. This feature of HTTP/2
is not widely used and will not be incorporated into testing throughout this
project.

2.2.5 HTTP/3
HTTP/3 is the newest iteration of HTTP, standardized in July of 2022 [24].
It aims to re-implement HTTP/2’s new features to use client-server connec-
tions efficiently. Some of the features that this project makes use of include;
connection multiplexing and header compression. HTTP/3 was created to
fix some shortcomings of HTTP/2, one of which is head-of-line blocking,
explained in Subsection 2.4.3.

2.3 Head of Line Blocking
Head-of-line blocking occurs when packet loss occurs, causing the down-
load of one file to delay the download of another — two factors in HTTP
cause this: HTTP head-of-line blocking and TCP head-of-line blocking.

7

2.3.1 HTTP Head-of-Line-Blocking
In HTTP/1.1 and previous versions of HTTP, each file download requires
a dedicated TCP connection [19, 22]. Browsers will only open a limited
number of connections to avoid using excessive resources [25]. For most
modern browsers, this TCP connection limit is six connections. The browser
must enqueue the remaining requests if more than six files are requested. If
packet loss occurs on one of the active file downloads, the queued files will
be delayed until a connection is free.

2.3.2 TCP Head-of-Line Blocking
Head-of-line blocking can also occur due to the semantics of TCP. If multi-
ple files are downloaded over a single connection, if packet loss occurs on
one of the file downloads, the entire connection will be blocked until the
packet is retransmitted. This is because TCP congestion control does not
account for multiplexed TCP connections.

2.4 Transport Protocols

2.4.1 Transmission Control Protocol (TCP)
TCP is a connection-based transport protocol atop the IP network layer pro-
tocol [26] (see Figure 2.2). Connections are initiated via a handshake (see
Figure 2.3), which takes one round trip to create a TCP connection. The
handshake is used to establish a connection between the client and server
and to synchronize the sequence numbers of the data being sent. Once the
connection is established, data in packets called TCP segments can be sent
in either direction.

Figure 2.3: Diagram showing the TCP handshake

8

2.4.2 TCP over Transport Layer Security (TLS)
Transport Layer Security (TLS) is a cryptographic protocol that provides
security to the data sent over a transport protocol (e.g., TCP) connection
[27]. TLS is initiated with a secondary handshake (see Figures 2.4 and 2.5),
wherein public key cryptography establishes a shared secret between the
client and server. This shared secret encrypts the data sent over the connec-
tion without it ever being exposed to the network.

Adding TLS to a TCP connection adds additional round trips to the hand-
shake. This addition may cause significant overhead in the time to transfer
encrypted information. With version TLSv1.2 or lower [27], the TLS hand-
shake requires two additional round trips to complete, whereas, for Transport
Layer Security Version 1.3 (TLSv1.3), the TLS handshake only requires one
additional round trip to complete.

Figure 2.4: Diagram showing the TCP handshake with TLSv1.2 or lower

2.4.3 Congestion Control in TCP
Congestion control is a mechanism that is used to regulate the amount of data
sent between the server and the client [28]. This is done to prevent any one

9

Figure 2.5: Diagram showing the TCP handshake with TLSv1.3

sender from overwhelming the network, which can cause packet loss and
latency. Examples of how a network can be overwhelmed are if a sender is
sending data at a rate that the receiver’s buffer cannot handle or if the buffer
of an intermediary device (for example, a router or switch) is complete. Con-
gestion control is implemented via a Congestion Window (CWND), which
starts small and increases as the data receiver sends acknowledgment pack-
ets (ACKs) to the sender to indicate that the data has been received in good
condition.

TCP NewReno is a widely used congestion control algorithm in modern
TCP implementations [29]. During the testing stages of this project, TCP
NewReno was used. This algorithm adjusts its congestion window, which
limits the number of unacknowledged packets that can be sent by the sender
when packets are lost or delayed in the network.

The congestion control algorithm in TCP NewReno detects packet loss
when the sender does not receive an acknowledgment (ACK) for a transmit-
ted packet within a specified timeout period [29]. In response to this loss,
the congestion window is reduced by setting it to a fraction of its previous
value, called the congestion window threshold, which signals the sender to
slow down and reduce transmitted data to prevent further congestion.

TCP NewReno implements a fast retransmit and recovery mechanism
when congestion is detected [29]. During this phase, the sender immediately
retransmits the lost packet without waiting for a retransmission timeout and
increases the congestion window by a small amount for every ACK received

10

for the outstanding packets. This enables the sender to recover quickly from
the loss and continue transmitting data faster. If further losses occur during
recovery, TCP NewReno enters a timeout phase. In that case, TCP reduces
its congestion window size to its initial value and slows down its transmis-
sion rate to prevent further congestion.

TCP NewReno’s congestion control algorithm optimizes the connec-
tion’s throughput [29] whileminimizing network congestion and packet loss.
By identifying packet loss andmodifying its congestionwindow, TCPNewReno
can adapt to changing network conditions and ensure reliable and efficient
data transfer.

2.4.3.1 Packet loss effect on HTTP/2

HTTP/2 uses a single TCP connection to send and receive data across multi-
ple streams. This means the entire connection is slowed if multiple files are
downloaded simultaneously, and a packet is lost for any stream. This is by
congestion control rectifying the connections’ instability and slowing down
the transmission rate to prevent further congestion. For HTTP/1.1, this is not
an issue, as if multiple files are being downloaded, they are doing so over
separate TCP connections. This means that if a packet is lost for one of the
connections, the other connections are unaffected.

2.4.4 User Datagram Protocol (UDP)
User Datagram Protocol (UDP) is a connectionless transport protocol atop
the IP network layer protocol [30]. UDP is a simple protocol that does not
implement many of the features that TCP does. It does not implement flow
control, error checking, or retransmission of lost data. UDP is often used
for applications that do not require these features, such as streaming real-
time applications like video games. UDP is also used for DHCP (Dynamic
Host Configuration Protocol) [31], as UDP does not require a client-server
connection, unlike TCP, which cannot broadcast to multiple machines to
accept an IP address.

For data to be transferred, it is first broken down into smaller chunks
called datagrams [30]. Each datagram is labeled with header data detailing
the source and destination ports and the length of the datagram payload.
There is no guarantee that the destination will receive a datagram or receive
it in the same order it was sent.

11

Figure 2.6: Diagram showing the initial QUIC handshake with TLS

2.4.5 QUIC
Initially developed by Google in 2012, QUIC is a general-purpose trans-
port layer protocol that sits atop UDP [32]. QUIC aimed to be a plug-in
replacement for HTTP/2, to improve user experience concerning page load
times [32]. QUIC is a connection-oriented protocol [33], similar to TCP,
to provide many of TCP’s features. QUIC does this while attempting to
avoid some of the pitfalls associated with TCP, such as the requirement for
a client-server connection to be established before data can be sent, head-of-
line blocking, and lack of seamless connection migrations.

2.4.5.1 Standardization of QUIC and HTTP/3

Google submitted QUIC to the IETF as a draft in 2016 [34], standardized
in 2021 [33]. QUIC was initially intended to encapsulate both the trans-
port protocol and the HTTP binding (HTTP-over-QUIC) [34]. During the

12

Figure 2.7: Diagram showing the QUIC handshake with 0-RTT

drafting process, however, the IETF distinguished a clarification between
the two, designating the transport protocol as QUIC and the HTTP bind-
ing as HTTP/3. This was done to avoid confusion and communicate that
QUIC is a general-purpose transport protocol, not just a transport protocol
for HTTP [35].

2.4.5.2 Streams

As stated in RFC 9000, QUIC:AUDP-BasedMultiplexed and Secure Trans-
port, QUIC transmits data over a connection through streams. These streams
send data in the form of QUIC packets in sequential order. QUIC supports
both unidirectional and bidirectional streams. Unidirectional streams send
data from one endpoint to another, while bidirectional streams send data in
both directions. This allows a single QUIC connection for multiple data
streams, such as multiple files being downloaded concurrently.

Stream prioritization is a fundamental feature of the QUIC protocol that
enables the QUIC implementation to organize streams based on their rela-
tive importance [33]. This can improve the overall performance of the data
transfer by ensuring that critical data is handled as quickly as possible.

In addition, to stream prioritization, QUIC supports stream multiplex-
ing [33], which enables multiple streams to be transmitted over a single con-
nection simultaneously. This reduces the overhead of opening and closing
multiple connections, making data transfer more efficient. Stream multi-
plexing and prioritization work together to provide a flexible and efficient
mechanism for data transfer in QUIC.

13

2.4.5.3 Connection Migration

QUIC allows for connection migration by way of using client & server con-
nection IDs [33]. Connection IDs are 64-bit identifiers used on both server
and client to identify a connection and hold context on each. They can
be used to identify a connection when a client migrates to a new network,
such as switching from an LTE mobile network to a public Wi-Fi network.
This allows a connection to persist through switches in the IP address. This
can allow users to keep a connection ongoing while moving between net-
works seamlessly without interruptions. In video streaming, this may cause
a downloading segment to be lost over TCP, but with QUIC, the download
should continue over the new network.

2.4.6 Congestion Control in QUIC
The UDP transport protocol does not implement congestion control [30], so
it is up to QUIC to implement this feature.

QUIC’s modular congestion control can be swapped out for other con-
gestion control algorithms [36]. According to the standard [36], the default
congestion control algorithm is based on NewReno and is referred to in the
document under the same name.

One significant change is that congestion control is on a per-path ba-
sis [36]. This means that if a connection is slowed down due to packet loss,
all other streams on different paths are unaffected, as they are on separate
paths. This is a significant improvement over TCP. If a packet is lost in
a connection, the entire connection is affected, which is significantly detri-
mental for HTTP/2, which downloads multiple files over a single connection
(see 2.4.3.1).

2.4.7 Transport Layer Security (TLS) and QUIC
Instead of the transport protocol being transported over TLS v1.3 and is in-
corporated as part of QUIC [33] (see Figure 2.2). During a QUIC connec-
tion initiation with a previously unseen server, a client can send encrypted
data after just two round trips instead of the three round trips necessary for
TCP+TLS. For a server the client has previously exchanged cryptographic
details for, encrypted data can be sent without waiting for a round trip to
complete (see Figure 2.7). Alternatively, TCP requires an additional round
trip to initiate a TCP connection.

14

This version of TLS will not be optimized by kTLS (Kernel Transport
Layer Security), as QUIC is not run in kernel space. This may pose a signif-
icant advantage for TCP over TLS, as Netflix suggests it gives considerably
faster handshakes [37].

15

Chapter 3

Analysis

HTTP/3 and QUIC are relatively new protocols, and up until recently, they
were still in a draft state [24, 33] and were not recommended for produc-
tion systems. However, with the release of the IETF standard RFC 9114,
HTTP/3 is now considered stable and ready for production use. Due to its
recent standardization, a few full implementations of HTTP/3 and QUIC are
available together. That being said, some implementations do exist. This
chapter will discuss some of the implementations of HTTP/3 and QUIC,
their implementation details, and any issues faced by the student while us-
ing them.

3.1 Server Implementations

3.1.1 NGINX
NGINX is an open-source, high-performance web server that is a popular
choice in the open-source community [38]. Among the web servers in use
today, NGINX has been the most-used web server for the past four years
[39].

NGINX announced adding experimental support for QUIC and HTTP/3
on a separate branch of the mercurial NGINX source code repository in 2020
[40]. This branch still needs to be merged into the main branch, but NG-
INX plan on merging it into version 1.25 of the software by 04/11/24 [41].
The student compiled NGINX from source and linked it to Google’s Bor-
ingSSL library [42], a fork of OpenSSL that supports TLSv1.31. The stu-

1OpenSSL’s maintainers have decided not to support QUIC for the foreseeable future
[43]. As a result, QUIC implementations use a fork of the OpenSSL library to add the

16

dent then compiled NGINX with the QUIC stream, HTTP/3 module, and
HTTP/2 module.

NGINX’s implementation of QUIC and HTTP/3 is based entirely on the
IETF standards [33] [24]. It does not use proprietary extensions, needs few
dependencies, and is fully compatible with other QUIC and HTTP/3 imple-
mentations.

3.1.2 Cloudflare Quiche + NGINX
Cloudflare is a large CDN provider that provides an HTTP/3 proxy as a
service [44]. They have open-sourced a part of the underlying code for im-
plementing QUIC and HTTP/3 that runs their proxy. This library is called
quiche [45] 2. Cloudflare quiche is a library that can implement both a QUIC
server and a client. quiche is written in the Rust programming language and
is designed to be highly performant.

Cloudflare quiche has a built-in patch for NGINX that adds QUIC &
HTTP/3 support to the web server. The student compiled Cloudflare quiche
from its source and applied quiche’s patch to NGINX. Using the quiche
patch, the student could compile NGINX with HTTP/3 support, once again
linking it against Google’s BoringSSL library.

The Cloudflare quiche implementation of HTTP/3 and QUIC is based on
the IETF standards but includes several extensions. The extensions noted by
the student were that the default congestion control algorithm employed by
Cloudflare quiche is a non-standard version of the Cubic algorithm, which
is different from the NewReno default suggested in the IETF standard [33].
As well as this, there are multiple GitHub issues on the repository, pointing
out differences between the implementation and the official IETF Standard
[46, 47].

3.1.3 Google Quiche + Envoy
Google owns many websites ranking in the top 100 visited [6]. They also
created the initial draft of the QUIC protocol and released an open-source
implementation of QUIC and HTTP/3 called quiche [48]. Google quiche is
a library that can implement both a QUIC server and a client. It is written
in C++ and is the underlying library in the Chromium client implementa-

support themselves
2Google also has an open-source QUIC and HTTP/3 compliant library called quiche so

that they will be referred to as Cloudflare quiche and Google quiche, respectively

17

Figure 3.1: Diagram of Envoy’s use of HTTP/3

tion. Envoy is an open-source proxy server used by Google to route traffic
between their services [49].

As the HTTP/3 implementation for Envoy is intended just to be a TLS
and HTTP/3 terminating proxy to underlying web servers, the student did
not consider this implementation for testing, as it is intended to be used as a
web proxy, and not a web server, unlike the other implementations. How-
ever, the student did compile Envoy with Google’s quiche library and suc-
cessfully connected to the server using the Chromium client implementation
and proxied web traffic through the server to a remote HTTP/1.1 server.

3.1.4 QUIC-Go + Caddy
QUIC-Go is a QUIC and HTTP/3 implementation written in the Go pro-
gramming language [50]. It is a library that implements a QUIC server and
a client. It is designed to closely represent the official RFC 9000 [33] and
RFC 9114 [24]. However, at the time of writing, due to Go’s garbage collec-
tor3, when the library’s API allocates memory, a significant amount of CPU
time is required to free the memory. This can cause significant performance
degradation compared to other implementations, as the Go garbage collector

3free up memory after it has been allocated and subsequently no longer needed

18

performance issues at runtime [51]. There is ongoing work to improve the
library’s performance, but at the time of writing, it is not yet complete [51].
For this reason, this library implementation was not considered for testing.

Caddy is a lightweight web server written in the Go programming lan-
guage and has HTTP/3 support built-in using the QUIC-Go library [52]. The
student downloaded the official binary package available from the GitHub
repo [52], which had out-of-the-box support for HTTP/3.

3.2 Client Implementations

3.2.1 Chromium
Google Chrome and other Chromium-based web browsers [53] make up
over 62% of the web browser market share [54]. Chromium is an open-
source project that Google maintains [55]. It is written in C++ and is the un-
derlying codebase for Google’s QUIC and HTTP/3 implementation, Google
quiche. As Google is the project’s maintainer, the QUIC implementation is
likely highly optimized since they drafted the protocol. This would show
they have much experience with it, making it a good choice for testing,
as some other implementations may not be as optimized yet. Most people
streaming video will likely do so using Google Chrome [54].

3.2.2 QUIC-Go
QUIC-go, as was discussed in subsection 3.1.4, QUIC-go is unoptimized
and will not be considered for testing as a client. Its performance is not
comparable to other implementations, and testing it against the other HTTP
versions would be unfair.

3.2.3 Quiche + cURL
cURL is a command-line utility for transferring data using various proto-
cols. It is written in C and is available on most Linux distributions [56].
The Cloudflare quiche library can be used to add HTTP/3 support to cURL
[45]. The student compiled Cloudflare quiche from its source and linked the
static object files to cURL while compiling it. The student successfully con-
nected to previously-mentioned server implementations using the custom-
built cURL and downloaded files using HTTP/3.

19

Chapter 4

Implementation

4.1 Overview
This chapter explores the implementations of the tests carried out in this
project. The network environment used for the tests was discussed first, and
how it was altered to simulate different conditions.

4.2 Traffic Shaping
To simulate different network conditions, a method called traffic shaping is
used to alter the network conditions [57]. Traffic shaping is a technique used
to simulate different network conditions by altering the network character-
istics [58]. The tool used in the project to implement traffic shaping was tc
(traffic control), a Linux utility that allows for the manipulation of network
traffic. tc allows for the manipulation of latency, random packet loss rate,
and bandwidth. Multiple classes of traffic can be manipulated, but in this
project, we only modify the root class [58]. The root class refers to egress
traffic, which was the only traffic that was required to be altered for the tests
carried out on both client and server (See Figure 4.1).

4.2.1 Bandwidth
Bandwidth was altered using the tbf (Token Bucket Filter) module of tc. The
tbf module allows for the shaping of the bandwidth of a network interface
card (NIC) [58]. The tbf module adds a token bucket to the NIC, which
is filled at a user-defined rate. When a packet is sent, a token is removed
from the bucket. If there are no tokens in the bucket, the packet is dropped.

20

Figure 4.1: Traffic Shaping

This allows for the shaping of the bandwidth of the NIC. Bidirectional band-
width shaping was not necessary, as the data the client sent to the server was
negligible compared to the bandwidth constraint applied to the server.

1 #!/bin/bash
2 tc qdisc add dev eth0 root tbf rate 50mbit burst 32kbit

latency 200ms

Listing 4.1: Adding bandwidth constraints with TBF

4.2.2 Latency
To shape the network latency between the client and server, we used the
netem (Network Emulation) module of tc to shape egress latency. The netem
module adds a packet queue to hold packets for a user-defined amount of
time before sending the data to theNetwork Interface Card (NIC) [58], which
then sends the packet to the network. This allows for the addition of a delay
to the packets, which simulates network latency. The methodology men-
tioned above was applied on both client and server machines to add bidirec-
tional latency to the connection, ensuring the latency was the same in both
directions.

1 #!/bin/bash
2 tc qdisc add dev eth0 root netem delay 100ms

Listing 4.2: Adding latency with Netem

4.2.3 Packet Loss
The Linux tool tc’s netem module is also used to add random packet loss. It
does this by adding a packet queue to the NIC, randomly dropping a user-
defined percentage of packets.

21

1 #!/bin/bash
2 tc qdisc add dev eth0 root netem loss 3%

Listing 4.3: Adding packet loss with Netem

4.2.4 Combining TBF with Netem
All tests conducted constrained the server to a 50 Mbps bandwidth (using
tc and tbf) and 23ms of delay (added by natural network latency). To apply
the packet loss rate or network latency for testing purposes, bandwidth, and
either latency or loss would have to be applied to the NIC simultaneously
[58]. This was done by using tc filters. Multiple network conditions can be
applied with tc simultaneously using filters.

1 #!/bin/bash
2 tc qdisc add dev eth0 root tbf rate 50mbit burst 32kbit

latency 200ms
3 tc qdisc add dev ens3 parent 1:1 netem $NETWORK_CONDITION

Listing 4.4: Traffic Shaping Script with Netem and TBF

4.3 Web Server
The student chose to use the nginxweb server for the project, for the reasons
outlined in Chapter 3, due to how closely it represents the IETF standard of
HTTP and QUIC [24,33].

When the student first began testing the web server, it was necessary to
compile the web server from its source, using the methodology discussed
in Chapter 3. However, in February of 2022, NGINX announced pre-built
packages for a version of nginx, supporting QUIC and HTTP/3 that was
available for Ubuntu 22.04. This allowed for a more straightforward or-
chestration of the test environment, as the web server could be installed us-
ing the package manager instead of manually compiling the web server from
the source.

The server configuration was mainly left to the default configuration,
except for quic-gso, ssl-early-data, and quic-retry [59], which were all set
to on. The student used the Let’sEncrypt Certificate Authority to get a
valid SSL cert, which was used to set up TLSv1.3 for each NGINX listener.
HTTP/2 and HTTP/3 were both bound and listening on port 443 (using the
NGINX reuseport option [59]), which is the semantic port for HTTPS [60].
HTTP/1.1 was set up to listen on port 8443. An add_header [61] directive

22

was used to add an Alt-Svc header to HTTP responses, advertising the avail-
ability of HTTP/3 on port 443.

The student also configured all HTTP versions to serve the duplicate
static files, which was used to test the web server’s performance.

4.4 Clients
Now that a web server supporting multiple HTTP versions was set up, the
web server’s performance was tested. To test the web server, the student
needed to use HTTP clients that supported all three versions.

4.4.1 File Download Tests
While the time it takes to download files is not necessarily a good metric
to determine video streaming performance on its own, it can still provide
insight into the overall performance of the protocol under differing network
conditions.

Requirements for a test setup to test the file download performance of
the web server were as follows:

1. be able to download files from the web server.

2. be able to files over different HTTP protocols

3. be able to record the time it takes to download a file

4. be able to alter the network shaping on the server and client

The student used Bash to create an appropriate script to realize each re-
quirement.

4.4.1.1 Requirement: Download files

The student used the curl command line tool to download files from the web
server. curl, as was detailed in Chapter 3, is a command line tool that allows
for the transfer of data using a variety of protocols. curl is available in the
Ubuntu package repository and can be installed using the package manager
apt.

The application data was then redirected to /dev/null to avoid writing the
data to disk, which would have been unnecessary and would add to the test
time to write the data to disk.

23

1 #!/bin/bash
2 curl -s -o /dev/null $URL

Listing 4.5: Downloading files with curl, and redirecting to /dev/null

4.4.1.2 Requirement: Use different HTTP protocols

As was described in Chapter 3, the student compiled curl against the Cloud-
flare quiche library. This custom-built version of curl supports HTTP/3,
HTTP/2, and HTTP/1.1. The student could then use curl to download files
over the three protocols. The Bash script used this version of curl to request
files over the different HTTP protocols. To differentiate between down-
loading over HTTP/3 and HTTP/2 (since they share the same port number
of 443), a special command-line flag was used with curl to specify the pro-
tocol. To differentiate between HTTP/1.1 and the other protocols, the port
number was changed to 8443 to download the file over HTTP/1.1.

1 #!/bin/bash
2 curl --http3 -s -o /dev/null $HOSTNAME

Listing 4.6: Downloading files over different HTTP protocols

4.4.1.3 Requirement: Record the time it takes to download a file

The student initially attempted to use the Linux time command line tool to
record the time it takes to download a file. time is a command line tool that
runs a command and records the time it takes to run the command. The
student used the -f flag to format the output of the time command to be the
time in milliseconds that curl takes to complete, which was then used by the
Bash script to record the time it took to download a file.

This, however, proved to be imprecise, as the time command would
record the time taken for the command to start up and subsequently finish
instead of the time for the file to be downloaded.

To avoid this, the student used curl’s write-out flag, which allows for
outputting the time to download or some other metrics. The student used the
time_total variable to output the time from request to the entire data transfer
completion [62]. This was then used by the Bash script to record the time it
took to download a file.

1 #!/bin/bash
2 curl --http3 -s -o /dev/null -w "%{time_total}\n" $HOSTNAME

Listing 4.7: Downloading files with curl, and recording the time it takes to
download the file

24

4.4.1.4 Requirement: Alter the network shaping on the server and
client

To apply network shaping with tc as detailed in Chapter 3, the script would
need to run commands on the server to apply network shaping remotely. To
do this, the student used Secure Shell (SSH) to run commands remotely on
the server. SSH is a protocol that allows for the execution of commands on
a remote machine [63]. SSH Keys were used to authenticate the client to the
server, allowing the client to run commands on the server without waiting
on user input for a password.

To run different tests under different network conditions, the Bash script
would read in a text file which defined a label to name the results file for
each test, the file to download, and the tc command to run on the server.

1 2mb_loss_5 2MB.txt tc qdisc add dev eth0 root netem loss 5%

Listing 4.8: Example line of a testfile used by the Bash script

4.4.2 Video streaming test
To address the aims of this report, the student tested the video streaming
performance of the web server. To do this, the student used the Google
Chrome browser to stream a video from the web server. As Google Chrome
has the majority of the market share for web browsers [54], it was decided
that it would be the best choice for testing the video streaming performance
of the web server. Google Chrome is based on the Chromium open-source
project, which, as was discussed in Chapter 3, has support for HTTP/3 &
QUIC via Google quiche.

A website that used the DASH video streaming protocol was used to test
video streaming potential on a browser. Requirements for a test setup to test
the video streaming performance of the web server were:

1. be able to stream a video from the web server over different HTTP
versions

2. be able to keep track of bitrate switches and the minimum, mean, and
maximum bitrate of streamed video

3. be able to keep track of buffer length throughout playback of the video
stream

4. be able to store the results of each test

25

5. be able to define a test scenario for each test

The student used ffmpeg and GPAC [64, 65] to transcode Blender’s Big
Buck Bunny video [66] into a series of DASH video streams at multiple bi-
trates with three distinct segment sizes. The student then used react [67] to
build a website that could stream the video over HTTP using the dash.js li-
brary. React was used due the simplicity of including the dash.js [68] library
in the web app. NextJS [69] was the framework used to build the website, as
it is a framework that allows for server-side rendering of React components
and includes a simple backend server that was used for storing the video
stream metadata.

4.4.2.1 Requirement: Be able to stream a video from the web server
over different HTTP versions

A website was built making use of the dash.js [68] library to stream a video
over HTTP using TypeScript (TS) [70], a superset of JavaScript (JS) that
adds a sophisticated type system to JS and gets trans-piled to JS. This allows
for dash.js to feed video segments to the HTML5 video player and use the
browser to fetch the video segments. The browser will abstract away the
details of the HTTP protocol from the underlying JavaScript code in the
library. The library can then stream video without depending on a specific
version of HTTP.

4.4.2.2 Requirement: Be able to keep track of bitrate switches and the
minimum, mean, and a maximum bitrate of streamed video

The dash.js [68] library allows video stream metadata capture at runtime.
One such metric that can be read is the current bitrate of the video stream.
TypeScripts global setInterval [71] function was used to poll the metrics
at an interval of one second. The metrics were then stored in React state
variables [67], which tracked the complete history of the video stream’s bi-
trate throughout the entire length of the playback. The minimum, mean, and
maximum bitrates were calculated when the video finished.

4.4.2.3 Requirement: Be able to keep track of buffer length through-
out playback of the video stream

The buffer length at any given time is anothermetric capable of being queried
at runtime. This was also polled with the same setInterval function and
stored in React state variables.

26

4.4.2.4 Requirement: Be able to store the results of each test

The results of each test were serialized into a JavaScript Object Notation
(JSON) [72] variable before being sent to the backend Application Pro-
gramming Interface (API). The API would then unmarshal this JSON object
into a Structured Query Language (SQL) [73] INSERT query before using a
MySQL client to execute the query on the Planetscale database [74]. The re-
sults of the test were then stored in the database. This allowed for the results
to be queried and granularly analyzed later.

4.4.2.5 Requirement: Be able to define a test scenario for each test

To define a test scenario for each test, the student used URL query param-
eters, which permitted the definition of a test scenario to be passed to the
website. The website then uses the query parameters to define and run the
test scenario. This allowed the test scenarios to be defined in a URL, which
could be shared with others to run the same test scenario.

Variables that could be defined in the test scenario were:

• the name of the video to stream

• the size of video segments to request

• the network constraint applied

• the number of times to repeat the test

These variables were then used to define the video stream and different
labels used in the serialized JSON object to define metadata about the test
(including the network constraint applied).

4.5 Data Analysis
Initially,Go-Echarts [75]was planned to be utilized for automation of graphs
using recorded metrics from experiments using quic-go. However, quic-go
presented performance problems outlined in 3, which went unused in the
final results and report.

After this, a custom curl script was used to automate data collection be-
fore feeding the results into a Python matplotlib-based script to generate
graphs [76]. This was a much more time-consuming process than initially
planned, as the student had to manually define graphs and their properties

27

in the Python script for each test scenario. Due to this, the student opted to
use Google Sheets [77] to generate graphs for most of the experiments, as it
was much quicker to generate graphs in Google Sheets than in Python.

Google Sheets was a valuable tool for generating graphs. Data could be
chosen granularly to include different formulae to calculate valuable met-
rics, such as the interquartile range of buffer length. However, as the graphs
became more complicated, Google Sheets proved unsuitable, as graphs with
multiple axes and legendswere challenging to create. Due to this, the student
then moved to Microsoft Excel [78] to generate more complex graphs.

Microsoft Excel proved invaluable for generating graphs, as it allowed
for creating complex graphs with multiple axes and legends. However, the
student had to manually define the data to include in the graphs, which was
time-consuming. The student also had to manually define the axes and leg-
ends for each graph, which was also time-consuming. That being said, it
was the best tool used for generating graphs. Microsoft Excel generated all
graphs shown in 5.

28

Chapter 5

Experiments

Experiments were run against an OVHVirtual Private Server (VPS) with the
following specifications:

• CPU - Unspecified Intel Xeon

– 1 vCore
– 1 Thread
– 2.4 GHz Clock Speed
– x86-64 Architecture
– Intel
– Meltdown mitigation: PTI (Page Table Isolation)

• 2 GB RAM

• 20 GB SSD

• 100 Mbps network

• Ubuntu 20.0.4 LTS, Kernel 5.15.0-69-generic

Experiments were recorded from a local machine (Framework Laptop
[79]) with the following specifications:

• CPU - Intel Core i7-1260p

– 12 Cores
– 16 Threads

29

– 4.7 GHz Boost Clock Speed
– 3.4 GHz Base Clock Speed 1

– x86-64 Architecture
– Intel
– Meltdown mitigation: Not affected

• 32 GB RAM

• 1 TB SSD

• 1 Gbps network

• Ubuntu 22.0.4 LTS, Kernel 5.19.0-40-generic

Sustained download throughput was measured using the iperf3 tool, a
command-line tool for testing network bandwidth [80]. The tool was run
in server mode on the VPS and client mode on a local machine. The client
machine was connected to the VPS via a 100 Mbps network link.

Sustained TCP download throughput was measured at 92Mbps with 0%
packet loss. Sustained UDP download throughput was measured at 86Mbps
with 0% packet loss. Tests were run multiple times to ensure consistency.

File download tests are an average of 30 iterations of tests run with curl,
as described in Chapter 4. Video streaming tests are an average of 3 iterations
of tests run on the remote machine streaming Big Buck Bunny [66] for nine
minutes and fifty-six seconds each using dash.js, as described in Chapter 4.
Initial load time tests were the mean average of the three tests’ initial load
times.

5.1 Results

5.1.1 Video Streaming Results Under Optimal Conditions
Under optimal network conditions, ofmaximumdownload speed of 50Mbps,
23ms round trip time, and 0% packet loss, HTTP/3 performed similarly to
the other versions of HTTP, except for minor regressions in video buffer
length.

1This CPU has efficiency and performance cores, more details can be found
at https://ark.intel.com/content/www/us/en/ark/products/226254/
intel-core-i71260p-processor-18m-cache-up-to-4-70-ghz.html

30

https://ark.intel.com/content/www/us/en/ark/products/226254/intel-core-i71260p-processor-18m-cache-up-to-4-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/226254/intel-core-i71260p-processor-18m-cache-up-to-4-70-ghz.html

Figure 5.1: Mean bitrate of HTTP/3, HTTP/2, and HTTP/1.1 under optimal
network conditions

As shown in Figure 5.1, HTTP/3 yielded the same mean streamed video
bitrate as the other two protocols. This is expected from any competent
protocol for streaming video, as the maximum video bitrate shown is 4.2
Mbps when the link bandwidth is 50 Mbps.

31

Figure 5.2: Median buffer length of HTTP/3, HTTP/2 and HTTP/1.1 under
optimal network conditions

Figure 5.3: Lower quartile of buffer length of HTTP/3, HTTP/2 and
HTTP/1.1 under optimal network conditions

When comparing the median and lower-quartile buffer lengths between

32

the three protocols, HTTP/3 performed slightly worse than HTTP/2 and
HTTP/1.1, as seen in Figure 5.2. This 1% decrease in the median buffer
length and 3% decrease in the lower-quartile of buffer length for HTTP/3
is only present for ten-second segments. However, for HTTP/3, the other
segment sizes yield equal results with the other protocols.

This is a minor regression in performance and can likely be explained by
HTTP/3’s slight decrease in throughput performance at higher bandwidths,
as was seen in Figure 5.5. While the ten-second segments comprised sig-
nificantly lower bitrate data, the overall segment was more prominent, and
thus, the overall segment took longer to download. The other segment sizes,
which are considerably smaller, are likely to have taken advantage ofHTTP/3’s
stream multiplexing capabilities. This would likely have resulted in a better
overall throughput when streaming using lower segment sizes, which would
explain the similar performance with the other protocols for the smaller seg-
ment sizes (four seconds and two seconds).

Figure 5.4: Rounded-up initial load time of HTTP/3, HTTP/2 and HTTP/1.1
under optimal network conditions

The initial load time was also measured; the results can be seen in Figure
5.4. All protocols yielded a sub-second initial load time of one second or
less. This, however, is to be expected as the size of a single segment of any
of the segment sizes should be

33

5.1.2 Performance under bandwidth constraints
5.1.2.1 File download performance

Figure 5.5: Mean time to download a 2MB file using HTTP/3, HTTP/2, and
HTTP/1.1 under different bandwidth constraints

Under all bandwidth constraints, HTTP/3 had less throughput than the
other versions of HTTP. This can likely be explained by three causes: con-
gestion control ramp-up, packet length, and Operating System (OS) schedul-
ing.

QUIC’s congestion control algorithm, as detailed in Chapter 2, uses a
slow-start technique to ramp up the amount of data that can be sent without
causing congestion. This may cause performance degradation because, from
Figure 5.5 results, HTTP/3’s throughput is significantly lower than the other
protocols at higher bandwidths. This is likely due to the slow-start ramp-
up of the congestion control algorithm, which would cause HTTP/3 to have
lower throughput than HTTP/2 and HTTP/1.1 earlier during the download.

The packet length observed for QUIC downloads was 1294 bytes (in-
cluding UDP and IP headers) over IPv4. This is significantly smaller than
the corresponding packet lengths for TCP of up to 1506 bytes. This likely
gives QUIC a disadvantage compared to TCP, as under these conditions,
TCP can send more data in fewer packets than QUIC. The packet length and
UDP Kernel implementation overheads would contribute to QUIC perform-

34

ing worse than TCP under any bandwidth.
The last proposed cause of HTTP/3’s performance degradation is page-

table isolation for user space programs [81]. HTTP/2 and HTTP/1.1 are both
TCP-based protocols and, thus, are implemented in the Linux kernel [82].
Programs that run in kernel space are not subject to the same scheduling en-
vironment as user space programs [81]. User space programs are subject to
context switches, which is the context of switching between kernel and user
space, which causes significant overhead, because since Meltdown [83], for
affected Intel processors, the Linux kernel isolates page tables from other
user space programs to protect the data, and then reload them into cache
when switching back to kernel space. This means that any program running
in kernel space will likely be more performant than the same program run-
ning in user space. This low-level performance advantage of kernel space
programs is likely the cause of HTTP/2 and HTTP/1.1 performing better
than HTTP/3 in terms of throughput.

5.1.2.2 Video streaming performance

These tests show some metrics of video streaming across the three protocols
and how well they each perform under constrained bandwidth. The metrics
measured were the median and lower quartile of buffer lengths, the initial
load time, and the mean used video bitrate. The results of these tests can be
seen in Figures 5.7, 5.8, 5.11, and 5.5.

Figure 5.6: Relationship between mean video bitrate and bandwidth

The mean bitrate used by each protocol is shown in Figure 5.6, and the
results show that HTTP/3 performed similarly with the other protocols for

35

bandwidths of 50 Mbps, 25 Mbps, and 10 Mbps. However, under a band-
width constraint of 5Mbps, HTTP/3 performs better than the other protocols
for any segment size. This may be explained by QUIC’s stream prioritiza-
tion implementation being different from HTTP/2’s.

At the lowest-tested bandwidth constraint of 1Mbps, HTTP/3 performed
equal to or worse than the other protocols. This can likely be explained by
QUIC’s inefficiencies on Linux (see Section 5.1.2.1).

Figure 5.7: Relationship between median video buffer length and bandwidth

Figure 5.8: Relationship between the lower quartile of video buffer length
and bandwidth

36

Regarding the median buffer length in Figure 5.7, HTTP/3 performs
equal to or better than the other protocols until a bandwidth constraint of
1 Mbps. At this bandwidth constraint, HTTP/3 performs worse than the
other protocols.

The lower quartile of buffer lengths in Figure 5.8 shows that HTTP/3
performs similarly to the other protocols until a bandwidth constraint of 1
Mbps. At this bandwidth constraint, HTTP/3 performs worse than the other
protocols. An exception is seen for two-second segments at 5Mbps, where
HTTP/3 performs worse than HTTP/1.1 but better than HTTP/2.

Figure 5.9: Relationship between the number of bitrate switches and band-
width

Under almost all conditions in Figure 5.9, HTTP/3 undergoes fewer bi-
trate switches than the other two protocols. This is likely due to QUIC us-
ing stream multiplexing [33], which is an improvement over HTTP/1.1, and
QUIC’s stream prioritization appears to work better than HTTP/2 in these
scenarios.

37

Figure 5.10: Relatinship between the video bitrate distribution streamed and
bandwidth

The distribution of bitrates streamed shows that HTTP/3 undergoes sig-
nificantly fewer bitrate switches than the other two protocols, with an ex-
ception for 5 Mbps bandwidth for two-second segments. This may be a
circumstance where throughput for the protocol was lower than the desired
amount for a higher quality but higher than necessary for a lower quality.
This would then cause the adaptive-bitrate algorithm to switch between the
two.

Figure 5.11: Relationship between rounded-up initial load time of video and
bandwidth

The initial load time of video streams in Figure 5.11 shows that HTTP/3
performs significantly better than the other two protocols, providing a better

38

quality of experience overall, as there are only five instances where initial
load time was >= 2 seconds. As was discussed in 2, this is a significant
indicator of good UX, as a user’s likelihood of video abandonment increases
rapidly from two seconds onwards.

39

5.1.3 Performance under packet loss conditions

Figure 5.12: Mean time to download a 2 MB file using HTTP/3, HTTP/2,
and HTTP/1.1 under different packet loss rates

Under packet loss conditions, HTTP/3 performs significantly better than
the other protocols. This is due to how QUIC handles packet loss and its
distinction from TCP [29, 36], which is discussed in Chapter 2. The results
of these tests can be seen in Figures 5.14, 5.15, 5.18, and 5.12. These results
show that at packet loss rates from 1% to 3%, packet loss has minimal effect
on HTTP/3, whereas it causes severe degradation in HTTP/2 and HTTP/1.1.

40

5.1.3.1 Video Streaming Performance

Figure 5.13: Relationship between mean video bitrate and packet loss rate

HTTP/2’s performance in this category is noticeably poor compared to the
other protocols. This is likely due to head-of-line blocking, which causes
multiple streams to be interrupted concurrently, as discussed in Chapter 2.
This problem is not present in HTTP/3, as QUIC uses per-path congestion
control.

HTTP/1.1’s performance is still poor, but not as bad as HTTP/2’s per-
formance. This can be explained both by HTTP/2’s design of using a single
TCP stream which may get blocked, and the fundamental design of TCP
congestion recovery. QUIC’s design states that QUIC implementations can
reduce the congestion window immediately after a packet loss, as classic
TCP NewReno does [29], or they can implement a less aggressive approach
by using Proportional Rate Reduction [84]. This allows QUIC’s congestion
to reduce the congestion window less than TCP would in the same situation,
which allows for higher throughput for QUIC than TCP.

41

Figure 5.14: Relationship between median video buffer length and packet
loss rate

Figure 5.15: Relationship between the lower quartile of video buffer length
and packet loss rate

The median and lower quartile of video bitrate in Figures 5.14 and 5.15,
it can be seen that for HTTP/1.1 andHTTP/2, the buffer length drops dramat-

42

ically as packet loss increases. HTTP/3 does not suffer from this problem,
as nginx’s implementation of QUIC’s congestion control is less drastic in
responding to packet loss than standard TCP NewReno. This is discussed in
Chapter 2.

Figure 5.16: Relationship between the number of bitrate switches and packet
loss rate

43

Figure 5.17: Relationship between video bitrate distribution and packet loss
rate

The performance difference for HTTP/3 in the context of packet loss
can be very clearly seen in Figures 5.16 and 5.17. HTTP/3 does not un-
dergo any bitrate switches, and as such, the bitrate distribution is zero for all
tested packet loss rates. HTTP/2 and HTTP/1.1 both undergo many bitrate
switches, and the bitrate distribution is significant for both.

44

Figure 5.18: Relationship between the rounded-up initial load time of video
and packet loss rate

As shown in Figure 5.18, HTTP/3’s initial load time is significantly
lower thanHTTP/2 andHTTP/1.1 for all packet loss rates. This givesHTTP/3
a significant advantage regarding UX, as the initial load time is significantly
lower as packet loss rates take effect. This is discussed in Chapter 1.

45

5.1.4 Performance under latency conditions

Figure 5.19: Mean time to download a 2 MB file using HTTP/3, HTTP/2,
and HTTP/1.1 under different latency

When round-trip time is increased, HTTP/3 performs poorly compared with
the other protocols. This can likely be explained by QUIC’s design espe-
cially considering the congestion control method, which incorporates the
average round trip time into the congestion window calculation [36]. This
is discussed in Chapter 2.

5.1.4.1 Video streaming performance

Under all metrics and increased round-trip time, HTTP/3 performs poorly
compared to the other protocols. The mean video bitrate, median buffer
level, lower quartile of buffer level, and initial load time are all significantly
worse for HTTP/3. The throughput in Figure 5.19 shows that HTTP/3 is the
only protocol to significantly decrease throughput as latency increases.

This is likely due to implementing the congestion control algorithm in
QUIC, specifically, the average round trip time used in calculating the con-
gestion window [36]. As well as this, as congestion control is implemented
on a per-path basis, a slow-start CWND is used for each path, which would
cause the throughput to be lower than TCP, which uses a single CWND for
downloads over the same connection. This is discussed in Chapter 2.

46

Figure 5.20: Relationship between mean video bitrate and latency

Figure 5.21: Relationship between median video buffer length and latency

47

Figure 5.22: Relationship between the lower quartile of video buffer length
and latency

Figure 5.23: Relationship between the number of bitrate switches and la-
tency

48

Figure 5.24: Relationship between video bitrate distribution and latency

Figure 5.25: Relationship between the rounded-up initial load time of video
and latency

49

Each graph (from Figures 5.20 to 5.25) shows that HTTP/3 performs
worse than HTTP/2 and HTTP/1.1 under increased latency. The drop in
video bitrate as latency increases is more significant for HTTP/3 than the
others. The initial load time in Figure 5.25 is also significantly higher for
HTTP/3 than the other protocols. This gives significantly worse QoE for
HTTP/3 than the other protocols under increased latency.

50

Chapter 6

Conclusions and Future Work

6.1 Conclusions
From the results discussed in Section 5.1, it can be concluded that HTTP/3
is a viable alternative to HTTP/2 and HTTP/1.1 for video streaming. This
can be said as HTTP/3’s performance was similar to the performance of the
other protocols under differing bandwidth conditions.

Results also dictate that inmost scenarios, HTTP/3 provides equal or bet-
ter video streaming performance than other protocols, except where latency
significantly impacts the network conditions of the client-server communi-
cation.

Video streams over HTTP/3 tend to have lower initial load times than
HTTP/2 and HTTP/1.1. According to Akamai, this is an important metric
to assess QoE, especially concerning video abandonment rates [3]. This
indicates that HTTP/3 is an adequate protocol for video streaming compared
to the previous HTTP versions.

6.2 Future Work
The work carried out during this project aims to investigate the performance
of HTTP/3 for video streaming by comparing it with previous versions of
HTTP. To adequately investigate this topic, more specific tests will need to
be carried out to better outline where HTTP/3 lies compared to the other two
protocols.

One such test would be to run multiple video streams concurrently over
different protocols and investigate how fair the protocols are in sharing the

51

available bandwidth. This is an important experiment to measure QUIC and
TCP bandwidth contention.

Another test that could be carried out is to test the performance of QUIC
when utilizing user space networking such as Data Plane Development Kit
(DPDK) [85]. DPDK is a set of libraries and drivers for fast packet process-
ing [85] done in user space. This would be an insightful test to see if the
performance of QUIC can be improved by allowing direct access to the NIC
instead of requiring syscalls to the kernel to process packets.

6.3 Personal Reflection on the Project
This project was the first academic writing project I have undertaken. Work-
ing on this project was challenging yet highly rewarding. As this project’s
subject requires a lot of background knowledge of the underlying protocols
and other technologies, a large portion of time was taken to read through
dozens of standards and research papers to understand the topics better.

The Internet Engineering Task Force (IETF) drafts and RFCs were espe-
cially useful for understanding the QUIC protocol and HTTP/3. The IETF
drafts and RFCs were written in a very technical manner and were challeng-
ing to understand at times. However, after reading through a few drafts,
I understood the structure of the documents and how to read them better.
This was important, as each of the protocols, and many of the specifics sur-
rounding different congestion control algorithms, etc., were defined in these
documents.

One of the most challenging parts of this project was designing and con-
ducting experiments to test the performance of the different protocols and
ensuring that experiments were reproducible and that the results consistently
proved challenging. As well as conducting the experiments, analyzing the
results was also a difficult task, as there were many different metrics to con-
sider. Another aspect of conducting experiments and analyzing data was
that I had to go through multiple tools and methodologies before finding
a tool that worked for me. Trying the tools explained in Chapter 4 took a
significant amount of time to find a toolset that satisfied my use case.

I’m glad I had prior experience writing documentation in LATEX, which
allowed me to add any necessary markup for the report quickly. If I had not
had prior experience with LATEX, I would have had to spend significant time
learning how to use it, which would have taken away from the time I had to
work on the project.

This project was initially intended to be a software development project,

52

where I would implement a video streaming service utilizing HTTP/3. A lot
of time, work, and planning went into the system design requirements of a
video streaming service, down to setting up amesh of video encoding servers
and a CDN. However, as time passed, the project scope changed dramati-
cally and became an empirical research project comparing HTTP versions’
performance. This was a difficult change, as I had to re-evaluate the project’s
goals and requirements and re-plan the project’s timeline. As well as this,
my personal experience and preference for software development and sys-
tem design were not utilized in this project, which was a shame. However,
it was worth the change, as I am glad that I was able to learn more about the
underlying protocols and technologies that make up the Internet.

53

Bibliography

[1] N. Anderson, “Netflix offers streaming movies to subscribers.”

[2] Cisco, “Cisco visual networking index: Global mobile data traffic fore-
cast update, 2017-2022.”

[3] . S. S. Krishnan and R. K. Sitaraman, “Video stream quality im-
pacts viewer behavior: Inferring causality using quasi-experimental
designs,” in Proceedings of the 2012 Internet Measurement Confer-
ence, IMC 12, (New York, NY, USA), p. 211–224, Association for
Computing Machinery, 2012.

[4] M. Tingley, “Streaming video experimentation at netflix:visualizing
practical and statistical significance,” Netflix Technology Blog, sep
2018.

[5] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
throughput: A 4g lte dataset with channel and context metrics,” in Pro-
ceedings of the 9th ACMMultimedia Systems Conference, MMSys ’18,
(New York, NY, USA), p. 460–465, Association for Computing Ma-
chinery, 2018.

[6] SimilarWeb, “Top websites ranking.”

[7] I. J. S. 29, “Dynamic adaptive streaming over http (dash) — part 1:
Media presentation description and segment formats,” standard, Inter-
national Organization for Standardization, 2022.

[8] D. I. Forum, “Github.com - dash-industry-forum/dash.js stargazers.”

[9] D. I. Forum, “Dash.js adaptive bitrate algorithm directory.” Avail-
able at: https://github.com/Dash-Industry-Forum/dash.
js/tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/
streaming/rules/abr.

i

https://github.com/Dash-Industry-Forum/dash.js/tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/streaming/rules/abr
https://github.com/Dash-Industry-Forum/dash.js/tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/streaming/rules/abr
https://github.com/Dash-Industry-Forum/dash.js/tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/streaming/rules/abr

[10] R. Pantos and W. May, “HTTP Live Streaming.” RFC 8216, Aug.
2017.

[11] I. J. S. 29, “Generic coding of moving pictures and associated audio
information — part 1: Systems,” standard, International Organization
for Standardization, 2022.

[12] Y. S. at Twitch, “Live video transmuxing/transcoding: Ffmpeg vs
twitchtranscoder, part i.”

[13] YouTube, “Choose live encoder settings, bitrates, and resolutions.”

[14] Apple, “Http live streaming.”

[15] Mozilla, “Evolution of http: Mdn.”

[16] R. T. Fielding, M. Nottingham, and J. Reschke, “HTTP Semantics.”
RFC 9110, June 2022.

[17] T. Berners-Lee, “The http protocol as implemented in w3.”

[18] H. Nielsen, R. T. Fielding, and T. Berners-Lee, “Hypertext Transfer
Protocol – HTTP/1.0.” RFC 1945, May 1996.

[19] H. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys, P. J.
Leach, and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1.”
RFC 2616, June 1999.

[20] Google, “Spdy: An experimental protocol for a faster web.”

[21] Google, “Spdy protocol.”

[22] R. Peon and H. Ruellan, “HPACK: Header Compression for HTTP/2.”
RFC 7541, May 2015.

[23] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2).” RFC 7540, May 2015.

[24] M. Bishop, “Http/3,” 2022.

[25] D. Data, “Browser connection limitations.”

[26] W. Eddy, “Transmission Control Protocol (TCP).” RFC 9293, Aug.
2022.

ii

[27] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Pro-
tocol Version 1.2.” RFC 5246, Aug. 2008.

[28] E. Blanton, D. V. Paxson, and M. Allman, “TCP Congestion Control.”
RFC 5681, Sept. 2009.

[29] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm.” RFC 6582, Apr.
2012.

[30] G. Fairhurst and T. Jones, “Transport features of the user datagram
protocol (udp) and lightweight udp (udp-lite).” RFC 8304, Feb. 2018.

[31] R. Woundy and K. Kinnear, “Dynamic Host Configuration Protocol
(DHCP) Leasequery.” RFC 4388, Feb. 2006.

[32] G. Chromium, “Quic, a multiplexed transport over udp.”

[33] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport.” RFC 9000, May 2021.

[34] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” Internet-Draft draft-ietf-quic-transport-00, Internet
Engineering Task Force, 11 2016. Work in Progress.

[35] M. Nottingham, “Identifying our deliverables,” oct 2018.

[36] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Con-
trol.” RFC 9002, May 2021.

[37] D. Gallatin, “The “other” freebsd optimizations used by netflix to serve
video at 800gb/s from a single server.”

[38] nginx, “Github.com - nginx/nginx.”

[39] Netcraft, “Web server survey,” Feb 2023.

[40] L. Crilly, “Introducing a technology preview of nginx support for quic
and http/3.”

[41] NGINX, “Milestone nginx-1.25.”

[42] Google, “Github.com - google/boringssl.”

[43] OpenSSL, “Openssl blog | quic and openssl.”

iii

[44] R. L. Alessandro Ghedini, “Http/3: the past, the present, and the fu-
ture.”

[45] Cloudflare, “Github.com - cloudflare/quiche.”

[46] BiagioFesta, “Connections stop working with aes-ciphers because of
missing key update.”

[47] heinrich5991, “Clienthello not identical when retry is received.”

[48] Google, “Github.com - google/quiche.”

[49] Envoy, “Github.com - envoyproxy/envoy.”

[50] QUIC-Go, “Github.com - quic-go/quic-go.”

[51] M. Seemann, “Throughput of quic-go.”

[52] Caddy, “Github.com - caddyserver/caddy.”

[53] Google, “Google chrome and chromeos additional terms of service,”
2021.

[54] SimilarWeb, “Similarweb - browsers,” Mar 2023.

[55] G. Chromium, “The chromium projects.”

[56] curl, “Github.com - curl/curl.”

[57] f5, “What is traffic shaping?.”

[58] Linux, “tc - manual - show / manipulate traffic control settings.”

[59] NGINX, “Nginx quic,” 2023.

[60] E. Rescorla, “HTTP Over TLS.” RFC 2818, May 2000.

[61] NGINX, “Nginx add header,” 2023.

[62] curl, “curl - libcurl,” 2023.

[63] C. M. Lonvick and T. Ylonen, “The Secure Shell (SSH) Connection
Protocol.” RFC 4254, Jan. 2006.

[64] FFmpeg, “Ffmpeg.”

[65] GPAC, “Gpac.”

iv

[66] Blender, “Big buck bunny.”

[67] Facebook, “React.”

[68] D. I. Forum, “Dash.js | github.com.” Available at:
https://github.com/Dash-Industry-Forum/dash.js/
tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/
streaming/rules/abr.

[69] Vercel, “Next.js.”

[70] Microsoft, “Typescript.”

[71] Mozilla, “setinterval.”

[72] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format.” RFC 8259, Dec. 2017.

[73] MySql, “Mysql documentation.”

[74] PlanetScale, “Planetscale documentation.”

[75] go echarts, “Github.com | go-echarts/go-echarts.”

[76] Matplotlib, “Matplotlib.”

[77] Google, “Google sheets.”

[78] Microsoft, “Microsoft excel.”

[79] Framework, “Framework laptop framework laptop 13 (12th gen intel®
core™).”

[80] iPerf, “iperf3 manual.”

[81] T. kernel development community, “Page table isolation.”

[82] torvalds/Linux, “Github | linux/net/ipv4/tcp.c.”

[83] G. P. Zero, “Meltdown: Reading kernel memory from user space.”

[84] M. Mathis, N. Dukkipati, and Y. Cheng, “Proportional Rate Reduction
for TCP.” RFC 6937, May 2013.

[85] Intel, “Data plane devleopment kit (dpdk) user guide.”

v

https://github.com/Dash-Industry-Forum/dash.js/tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/streaming/rules/abr
https://github.com/Dash-Industry-Forum/dash.js/tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/streaming/rules/abr
https://github.com/Dash-Industry-Forum/dash.js/tree/43ce52870cbda1686ce81e9cf2b32c47d9b0e4ee/src/streaming/rules/abr

Acronyms

CDN Content Delivery Network. 1, 53

DASH Dynamic Adaptive Streaming over HTTP. 1, 3, 4, 25, 26

HLS HTTP Live Streaming. 4

HTTP Hypertext Transfer Protocol. 1–3, 5–8, 12, 13, 22–26, 30, 33–35,
37, 40–42, 44, 45, 50, 51, 53

HTTP/1.0 Hypertext Transfer Protocol Version 1.1. 6

HTTP/1.1 Hypertext Transfer Protocol Version 1.1. 6, 8, 11, 18, 22, 24, 51

HTTP/2 Hypertext Transfer Protocol Version 2. 5–7, 11, 12, 14, 17, 22,
24, 33–37, 40–42, 44, 45, 50, 51

HTTP/3 Hypertext Transfer Protocol Version 3. 1, 2, 5, 7, 13, 16–19, 22–
25, 30, 31, 33–38, 40, 41, 43–46, 50–53

QoE Quality of Experience. 1, 2, 50, 51

TCP Transmission Control Protocol. 5–12, 14, 15, 30, 34, 35, 40, 41, 43,
46, 52

TLS Transport Layer Security. 9, 14, 15, 18

TLSv1.3 Transport Layer Security Version 1.3. 9, 16, 22

UDP User Datagram Protocol. 11–14, 30, 34

UX User Experience. 1, 2, 39

	Introduction
	Motivation
	Objectives

	Background
	Video Streaming
	Dynamic Adaptive Streaming over HTTP (DASH)
	HTTP Live Streaming (HLS)
	Progressive Streaming

	HTTP Versions
	HTTP/0.9
	HTTP/1.0
	HTTP/1.1
	HTTP/2
	HTTP/3

	Head of Line Blocking
	HTTP Head-of-Line-Blocking
	TCP Head-of-Line Blocking

	Transport Protocols
	Transmission Control Protocol (TCP)
	TCP over Transport Layer Security (TLS)
	Congestion Control in TCP
	User Datagram Protocol (UDP)
	QUIC
	Congestion Control in QUIC
	Transport Layer Security (TLS) and QUIC

	Analysis
	Server Implementations
	NGINX
	Cloudflare Quiche + NGINX
	Google Quiche + Envoy
	QUIC-Go + Caddy

	Client Implementations
	Chromium
	QUIC-Go
	Quiche + cURL

	Implementation
	Overview
	Traffic Shaping
	Bandwidth
	Latency
	Packet Loss
	Combining TBF with Netem

	Web Server
	Clients
	File Download Tests
	Video streaming test

	Data Analysis

	Experiments
	Results
	Video Streaming Results Under Optimal Conditions
	Performance under bandwidth constraints
	Performance under packet loss conditions
	Performance under latency conditions

	Conclusions and Future Work
	Conclusions
	Future Work
	Personal Reflection on the Project

	Bibliography
	Acronyms

